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ABSTRACT

An alternative to federated learning reducing the risk of GAN
attacks and membership inference attacks

Cameron Hochberg

Previous research has shown that federated learning is vulnerable to multiple
attacks, in particular whitebox attacks. Even limiting the number of parameters
shared can still lead to the training data of the victim being leaked. This is prob-
lematic especially when considering laws like GDPR and HIPAA that demand that
sensitive data be protected. Our alternative proposes to only share the output la-
bels themselves of the training phase to a server who would then choose the correct
label and send it back to all participants. This ensures that only blackbox attacks
could be performed on the system. Our preliminary results seem to show that this

would make it much harder to run membership inference attacks on this system.



1 Introduction

Recent developments in data gathering have led to the development of new
techniques in machine learning. With this development, laws have also started
to evolve in order to catch up with the advances in technology. The EU just a few
years ago added new regulations to data gathering and data processing in order to
protect consumers and prevent abuse from companies'. Because of such laws, it
can be hard to share data with other agents in order to create big enough datasets
for machine learning to be possible. With all the anonymization and security re-
quirements to share data, the quality of the data gathered is going to be affected.
To solve this, there exists methods like federated learning so that research can be
done while protecting the data gathered and preserving its quality?.

Federated Learning is a technique that allows multiple agents to train a model
in parallel by sharing the model updates with a central server. In this scenario,
the data would only be stored on each edge device and the server wouldn’t have
access to that data. The server would only receive the model updates of each local
model, compute the average and send that back to each participant so that they
can update their model. This would make each of them converge towards a central
model while respecting all the laws on data privacy.

However, researchers recently showed that federated learning was vulnerable
to multiple form of attacks that could recover the local training data®. Because
federated learning shared the model updates themselves, alot more data about the
training itself is shared and each update helps attacker refine their search. While

they did show that using techniques such as differential privacy, federated learning
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could reduce the risk of model inversion attacks greatly, GAN attacks still had great
success.

GDPR has various clauses that would then make federated learning unusable in
Europe. And as discussed earlier, techniques to reduce the risk of attacks proposed
under these guidelines would only hurt the quality of the data and thus the quality
of the model trained. This is why we wanted to produce an alternative to feder-
ated learning that would allow researchers to continue with collaborative learning
techniques.



2 Experimental Methods

2.1 AIMHI algorithm

In order to test the algorithm’s efficacy, I created a python script that would be able
to emulate the client-server relationship we see in federated learning. As we can

see in figure 2.1, our experiment is essentially divided into 5 big parts:

(1) Each participant trains their local model with their local dataset

(2) The server sends global unlabeled data to each local model

(3) Each participant classifies the data and sends the results to the server

(4) The server uses a consensus function to determine the correct label and
sends the result back to each participant

(5) Each local participant updates their local data

This is repeated until there the training is complete or there is no more training
data available.

In order to test the efficacy of the algorithm, I used the CIFAR-10 dataset and
trained 5 participants on local datasets of varying sizes. I also varied the size of the
global dataset as well as the number of training epochs and measured the accuracy
of each model on a validation set of 10K images given in the CIFAR-10 dataset after
each epoch. Finally we also varied the consensus function used by the server. First
using simple majority voting then using unanimous voting.

In simple majority voting, the global dataset was divided into batches of fixes
sizes and fed to each participants for a number of epochs. We also tried to see if us-

ing some form a linear feeding, that is feeding the same training data again for the
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Figure 2.1. Process and data flow for a) AIM HI and b) Federated Learning

same number of epochs, would raise the accuracy of each participants after they
gone through the global dataset a first time. In unanimous voting, we changed the
way data was processed by each participants. In that case, we directly fed the entire
global dataset to each participant and divided the data according to the consensus
function. If all participants labeled an image the same, it was classified as labeled
and participants would then train again with this additional set of images. In the
case there was different labels, we separated these images and sent them back to
each participant to be classified again after each model was trained. This was then
repeated until either all the data was labeled or a certain number of epochs was

reached.

2.2 Privacy Analysis

After showing some results of aimhi, I used the Machine Learning Privacy Meter
tool* to perform membership inference attacks® on one of the trained models.
The tool provides different parameters to fit the attack to the parameters of our
experiment. In this case, we assume that the server was the attacker and thus had
knowledge of the dataset prior to the attack and the attack model could be trained
on it.

We limited the attacks to arealistic number of epochs based on our experiments.
Thatis when the training period is over, we assume that the attacker can’t continue

his attack beyond that point.
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We ran two type of membership inferences attacks: whitebox attacks for fed-
erated learning and blackbox attacks for aimhi®. We varied the number of epochs

the attack was ran over as well as the amount of data the server had access to.



3 Experimental Results

3.1 AIMHI Algorithm
3.1.1 Majority Voting

Using majority voting, we saw an increase in model accuracy ranging from 10 to
20%. In figure 3.1, the experiment we ran also included feeding the training data to
each model an additional time for the same number of epochs to see if the accuracy
would go even higher. It was concluded that this didn’t increase accuracy but rather
increased the loss of each model even more. While majority voting couldn’t get to
the target accuracy of around 70% that federated learning could reach, we still
showed that AIMHI could indeed raise the accuracy of participants using only the

classification labels.

3.1.2 Unanimous Voting

In using this system, we could see that each model reached the 70% benchmark of
federated learning in only 10-20 epochs 3.2. This result shows that AIMHI depends
heavily on the consensus function chosen and can reach federated learning in ac-
curacy and efficacy. It can also be argued that it is somewhat better than federated
learning in that to achieve the same level of accuracy, federated learning requires

on the order of 100 epochs.
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Figure 3.1. AIM HI majority voting over 30 epochs using linear feeding

3.2 Privacy Analysis

In this section we measure the success of each type of attack against a Federated
Learning trained model versus an AIMHI trained model under each condition. We
measure the success of an attack based on 2 factors: the value of the Area Under the
Curve or AUC in our ROC graph and the present of 2 columns at both extremities
of the privacy analysis graph. In addition, these 2 columns should correspond to

the non members around 0.0 and training member around 1.0 respectively.

3.2.1 Whitebox attacks

In both the 100 and 30 epochs cases than we can see in figures 3.3 and 3.4, both
correspond to very successful attacks. The attacker was able to classify over 80%
of the training data members and keep a false positive rate below 10% at the worst

in the case of 30 epochs.
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Figure 3.2. AIM HI majority voting over 30 epochs using linear feeding
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Figure 3.3. Privacy analysis of Federated Learning over 100 epochs

3.2.2 Blackbox attacks

In the case of AIMH]I, the results are more spread. In figure 3.5, we can see that the

attack is somewhat successful or at least starting to be. 80% of the training data
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Figure 3.5. Privacy analysis of AIMHI over 100 epochs

10

members are identified with only a 20% false positive rate however, this also isn’t

necessarily done with great confidence either as we can see in the privacy analysis

graph. On the other hand, in figure 3.6, the attack isn’t successful at all. We can see

the start of both columns but the confidence in either isn't great which is reflected

in the ROC graph. When compared with federated learning in the same conditions,

this is a great improvement in securing the training data.
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4 Discussion

From our results, we have confirmed that federated learning is indeed vulnera-
ble to whitebox attacks. While we didn’t implement any defense measures against
membership inference attacks like differential privacy?, we were testing both cases
best possible conditions for an attacker. From our results, it is clear that using
AIMH]I, attacker would have a much more trouble in achieving a successful attack.
I acknowledge that there is no way to prevent this sort of attack entirely but even
when running a blackbox attack with a number of epochs similar to that of a feder-
ated learning training, the attack wasn’t the great success it was for the whitebox
attack on federated learning itself.

The next step in this research is to explore other areas that could affect the
success of an attack other than the number of epochs such as the amount of labels
collected per epochs as well as explore other more realistic cases where the attacker

would be one of the participants for example instead of the server itself.

12



5 Conclusions

In conclusion, AIMHI is an alternative to federated learning that provides more
data security as well as similar accuracy performance. The system isn’t perfect and
as shown in this worst case scenario, there is always the possibility of a successful
attack but, as outlined in the GDPR rules’, the goal is mostly to make it harder
for an attacker to recover the training data rather than preventing the attack all
together. While there is still alot of tests to do on AIMHI itself to test all of its efficacy
especially test in on a real dataset, this is still a very good proof of concept for a

collaborative learning framework.
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